Samtala, läsa, skriva, räkna, nog finns det samband men ...

Fyra tecknade gubbar med Pratbublor som inehåller: "2 + 2 ="

För att räkna måste man kunna ……. ja, vadå? frågar chefsloggoped Birgitta Johnsen:

Om det formuleras på följande sätt så instämmer nog alla igen: man måste kunna förstå sig på att sifferord (talade eller skrivna) står för en viss mängd och att andra ord inom matematiken, t ex gånger, minus, plus, kvadraten på betyder att man manipulerar med mängderna på ett alldeles bestämt sätt. Alltså handlar det om ord, som betyder något alldeles bestämt och lika för alla, för det är ju inte så att var och en själv bestämmer vad de här räkneorden ska betyda.

Uttrycker man sig på det här sättet så låter det ju faktiskt som om matematiken också är ett språk. Vilket samband finns det då mellan våra talade/skrivna språk och matematikens språk? För att nalkas denna fråga kan det vara en god idé att lägga grunden till svaren genom att ägna några avsnitt åt vad språk är, åt barnets språkutveckling, läsning och skrivning samt barnets matematiska utveckling. I anslutning till dessa avsnitt följer resonemang om likheter och skillnader.

I det sammanhang som denna artikel är skriven - FMLS´ projekt Språka Loss - vill man förstås också ställa frågan om svårigheter med att använda det talade och/eller skrivna språket är förknippade med svårigheter att använda det matematiska språket. Låt oss börja med den frågeställningen.

Problem med läsning, stavning och räkning - vad har de gemensamt?

Svaret beror på hur frågan ska tolkas. Lässvårigheter, liksom matematiksvårigheter, kan ha många olika orsaker.

Att läsa en text med behållning ställer krav på många olika förmågor. På samma sätt är det med problemlösning i matematiken. Allt som rent allmänt påverkar inlärningsförmågan kan påverka läsinlärningen och det matematiska tänkandet negativt. Hit hör t.ex. koncentrationssvårigheter, bristfällig skolgång, täta lärarbyten.

När det gäller läsningen så är det en viktig skillnad mellan avkodning (= att kunna läsa ut orden rätt) och förståelse. I den tidiga läsinlärningen är avkodningen central. Men så småningom kommer andra delar av språket att spela en stor roll. Ett gott ordförråd och förmåga att tolka komplicerad grammatik får en allt större betydelse med ökande ålder. Det har förstås att göra med att det språk en elev möter i skolan ökar i komplexitet ju högre upp vi kommer i skolsystemet och då räcker det inte att enbart vara duktig på att läsa fort och rätt. Problem med läsning kan således ha sin grund i olika former av språklig svaghet. När det gäller stavningsförmågan så kan den påverkas negativt om barnet har en påtaglig finmotorisk svaghet i skrivhanden.

Begreppet dyslexi används för att beteckna avkodningssvårigheter. En annan beteckning för samma typ av problem är specifik lässvårighet (Klassifikation…etc, 1997, sid 213), en beteckning som inkluderar stavningsproblem.

Matematiksvårigheter kan ha sin grund i specifika problem med matematiskt tänkande, men kan också bero på en språklig svaghet som försvårar förståelsen av s.k. lästal. De kan även bero på dyslexi, som leder till att lästalen blir svåra att avkoda, med felläsningar som följd.

När matematiksvårigheterna beror på brister i grundläggande matematiskt tänkande benämns de dyskalkyli. En annan beteckning för samma typ av problem är specifik räknesvårighet (Klassifikation…etc, sid 213). Begreppet dyskalkyli är inte lika klart utrett som begreppet dyslexi. Om förmågan till s k subitisering saknas (= att med en blick kunna uppfatta ett antal enheter, se vidare sid X) kan man definitivt tala om dyskalkyli. Om man inte tillägnat sig de fem grundläggande principer som Gelman & Gallistel beskrivit (se nedan sid X) så bör man också tala om dyskalkyli. I det medicinska klassifikationssystem som används internationellt anges att dyskalkyli ska innebära att det brister i förmågan när det gäller "basala räknefärdigheter såsom addition, subtraktion, multiplikation och division snarare än de mer abstrakta matematiska färdigheter som krävs i algebra, trigonometri, geometri och komplexa beräkningar" (Klassifikation…etc, sid 213).

Ska man skilja mellan muntlig och skriftlig matematik när det gäller dyskalkyli? Här är definitionerna oklarare. Forskare (Badian, Kosc) som beskrivit olika former av dyskalkyli har tagit med den skriftliga matematiken i begreppet. De har var för sig, lite olika, klassificerat skilda typer av dyskalkyli, där några helt och hållet har att göra med läsning eller skrivning av matematiska symboler.

Den som har avkodningssvårigheter har nästan alltid också större eller mindre svårigheter med att uttala långa och/eller främmande ord. Att komma ihåg namn som man inte hör så ofta kan också vara svårt, särskilt om de är ovanliga. Ett annat vanligt problemområde är inlärning av vissa ramsor, t ex månaderna och multiplikationstabellen. En del forskare menar att samtliga dessa svårigheter kan tillskrivas en genuin ljudosäkerhet, som försvårar memoreringen.

Ett mycket vanligt inslag vid dyslexi är att fel lästa ord är nästan rätt lästa. Ordet fjäder kan läsas som fjärde, protokoll kan bli kontroll, osv. Vi ser att bokstäverna lästs i fel ordning och att någon fallit bort eller lagts till. Blir det då likadant när matematiska tal ska läsas? Ja, för en del kan det bli så att även siffrorna byter plats, men det är långt ifrån regel. Många har inga problem med att läsa ut tal med siffrorna i rätt ordning, trots att de har stora svårigheter med att läsa vanliga ord. Det verkar således inte finnas något enkelt och entydigt samband mellan läsning av ord och läsning av tal.

Även vid skrivning kan det i samband med dyslexi förekomma att bokstäverna i ett ord får byta plats, men det är inte alls lika vanligt som vid läsning. Vid skrivning är det andra typer av fel som dominerar. Se avsnittet om Läs- och skrivutveckling nedan. Det verkar således inte heller finnas något enkelt och entydigt samband mellan att skriva ord och att skriva matematiska tal.

Sammanfattningsvis ser vi alltså att avkodningsproblem, dyslexi, leder till såväl lässvårigheter som vissa matematiksvårigheter. Dyskalkyli medför påtagliga svårigheter med matematikinlärning, men leder inte till läsproblem med andra texter än sådana som har stark anknytning till matematiska begrepp.

Hur är det då med matematikutvecklingen hos barn som är påtagligt svaga i sin talspråkliga utveckling, men har normal icke-verbal begåvningsnivå? Longitudinella studier (studier där man följer barnens prestationer över flera år) visar här att det blir skillnader mellan talat språk och det matematiska språket. Visst får de här barnen svårt med inlärning av räkneorden, men de når en påtagligt högre nivå i matematik än när det gäller språklig nivå (Donlan, 1998).

Det finns således inte något klart och entydigt samband mellan dyslexi och dyskalkyli. Man kan vara framstående i matematik, men svag avkodare och vice versa.

Vad är språk?

Ordet språk används på olika sätt av olika personer. En del använder det för att beteckna alla former av kommunikation mellan människor och även mellan djur. Det innebär att bildkonst, toner, gester, mimik, etc. betraktas som olika språkliga uttryck. Och visst kan man säga att det går att kommunicera (= samspela) via olika konstformer eller via läten, gester och mimik. Men det finns en viktig skillnad mellan denna form av kommunikation och kommunikation via talat språk - det finns inte något allmänt vedertaget samband mellan uttrycken och innehållet, åtminstone inte om vi menar ett tankeinnehåll. Vi kan t ex se en tavla som vi tycker ger uttryck för en mycket tydlig åsikt, men så kommer någon annan och kan inte alls hålla med om den tolkning vi gjort. Visst kan djur signalera avancerad information till varandra, tänk bara på hur bina kan visa var det finns föda, men det är långt kvar till människans möjligheter att framföra politiska åsikter och ironisera över andras åsikter i förtäckta ordalag! Djuren har en begränsad repertoar av signaler och de är ändamålsenliga för den specifika artens överlevnad.

Med språk som talas och skrivs är det annorlunda. Trots att vi använder ett begränsat antal ljud och skrivtecken som i sig själva inte betyder någonting, så möjliggör de överförande av tankar och idéer i obegränsad mängd, förutsatt att de som kommunicerar behärskar samma språk. Hemligheten bakom detta är att tecknen vi använder kan kombineras i det oändliga i enlighet med ett allmänt vedertaget regelverk. Som barn lär vi oss vilka ljud som ingår i det egna språket, hur ljuden kombineras till meningsbärande ord och hur orden i sin tur kombineras till korrekta satser.

Kännetecknande för talade/skrivna språk är att

• de utgår från en uppsättning tecken, t ex ljud eller bokstäver

• dessa tecken saknar egen innebörd när det gäller det talade språket och även för de skrivna språk som använder bokstavsskrift

• tecknen är godtyckliga, dvs. de varierar mellan olika språk

• de som använder ett visst språk har tillgång till samma överenskomna uppsättning tecken

• de som använder ett visst språk har tillgång till samma överenskomna regler för hur tecknen ska kombineras till större eller mindre meningsbärande enheter

• de som använder ett visst språk har kunskap om tecknens symbolfunktion, dvs. vet vilket förhållandet är mellan tecken och innehåll, vad tecknen betyder.

Alla talade språk och alla skrivna språk som uteslutande använder bokstavsskrift har dessa kännetecken. Det finns dock skriftspråk som kombinerar tecken utan egen innebörd med meningsbärande tecken, det gäller främst flera av de asiatiska skriftspråken. Även de dövas åtbördsspråk innehåller främst tecken utan egen innebörd.

Man använder ofta uttrycket naturliga språk för de talade och skrivna språk som vi dagligdags kommunicerar med.

När man vill beskriva ett visst språk eller jämföra flera språk, så brukar man använda sig av följande begrepp, som delvis ansluter sig till de kännetecknen som nyss radats upp.

Fonetik

I fonetiken beskrivs de talljud (foner) och den talmelodi (prosodi) som används på ett visst språk. Den fonetiska skillnaden mellan olika språk kan vara mer eller mindre påtaglig. Flera av de afrikanska språken låter t ex mycket främmande för en svensk persons öron. De använder ljud som uttalas långt bak i munnen och nere i svalget. De har också ett uttalssätt som låter som ett klickande. Prosodiskt låter flera av de asiatiska språken främmande för en svensk.

Det är oftast svårt att som vuxen lära sig ett annat språk så bra fonetiskt så att man verkligen låter som en infödd. När någon inte är infödd svensk hör vi det i regel lätt, vi säger att hon/han "bryter på svenska".

Fonologi

I fonologin beskrivs de minsta betydelseskiljande enheterna/segmenten i ett språk (fonemen).

Fonemen saknar alltså egen innebörd, men kan när de används för att bygga ett ord eller en orddel (se morfem nedan) resultera i förändrad betydelse. Om man t ex byter ut b mot s eller k i ordet bal, så förändras innebörden av ordet. Antalet fonem är olika för olika språk.

Även om vi i svenskan har en viss bestämd uppsättning talljud så betyder inte det att vi uttalar de här ljuden likadant varje gång vi säger dem. I själva verket kan uttalet variera ganska avsevärt mellan olika personer men även för en och samma person. De ljud som kommer före och efter ett visst ljud påverkar också uttalet. Om k-ljudet sägs före ett a-ljud som i kaka så låter det inte likadant som när det sägs före ett i-ljud som i kille. Men det tänker vi inte på. Hur kan det komma sig? Jo, vi har lärt oss att de här variationerna inte förändrar ordets innebörd, vi för omedvetet samman de olika varianterna till ett och samma fonem.

Ett fonem är således inte samma sak som det uttalade ljudet, snarare en inre föreställning om en ljudfamilj. Två fonetiskt olika ljud hör till olika fonem om de kan ge olika innebörd åt ett ord. Ett bra exempel för att klargöra detta är skillnaden mellan ett läspat och ett icke-läspat s-ljud. På svenska ändras inte ordets betydelse om s-ljudet uttalas läspande, men på engelskan kan det bli ett annat ord.

De här olika s-ljuden hör alltså till samma fonem i svenskan, men till två olika fonem i engelskan. I svenskan är den här fonetiska skillnaden inte betydelseskiljande (= fonologisk), men det är den i engelskan.

Ett annat exempel är de fonetiskt olika r- och l-ljuden, som i svenskan tillhör olika fonem men inte i japanskan. I svenskan kan de här ljuden ändra ett ords innebörd (ruta - luta), men i japanskan spelar det ingen roll om man säger r eller l, ordets innebörd blir densamma.

Exemplen har förhoppningsvis förklarat varför ett fonem inte har någon egen innebörd, men bidrar till att ändra ett ords innebörd samt varför vi säger att fonemet är språkets minsta betydelseskiljande enhet.

Fonemidén är fullkomligt lysande! Med ett begränsat antal enheter kan ett oerhört stort antal ord och yttranden skapas. Kombinationsmöjligheterna är nästan outtömliga. Sen är det en annan sak att varje språk har ett regelverk för vilka fonemkombinationer som är acceptabla. Men med låneord från andra språk följer justeringar av detta regelverk.

Morfologi

I morfologin beskrivs de minsta betydelsebärande enheterna i språket. Ett morfem skapas av ett varierande antal fonem. Ett morfem betyder något. Det kan ha en innebörd (ge en tankeassociation) som uppfattas av alla även när det förekommer helt isolerat, t ex dator, bok, dusch, glädje, ilska.

Men vissa morfem får en tydlig innebörd först när de kombineras med ett annat morfem, t ex -en, -n. De brukar kallas grammatiska. Ändelserna -n, -en innebär t ex ett visst bestämt objekt. Vi säger "Hämta boken!" inte "Hämta bok!" och avser då en alldeles bestämd bok som den tilltalade känner till. Ett annat exempel på ett grammatiskt morfem med viss innebörd är -lig som markerar en egenskap, som gör att det blir skillnad i innehåll mellan orden 'natur' och 'naturlig'.

Även morfemidén bygger på att man kan kombinera ett begränsat antal enheter för att skapa nya innebörder. I svenskan kan vi skapa långa ord genom att koppla ihop flera morfem (födelse/dag/s/tårte/garner/ing), men på andra språk åstadkommer man samma ord på annat sätt.

Även i morfologin finns ett regelverk för varje språk som bestämmer hur kombinationerna får se ut. Men med låneord från andra språk följer justeringar av detta regelverk. Inte har vi i svenskan haft -s som ändelse för flertal, men det har man i engelskan. Och med de engelska låneorden har vi också fått in den ändelsen i svenskan..

Semantik

Semantik har att göra med språkets innehållssida. Det kan röra sig om innebörden av ett ord, en fras eller ett längre yttrande.

Semantik är ett forskningsområde som inte bara engagerat lingvister, utan även filosofer, psykologer, litteraturvetare m fl. Det kan var en anledning till att det finns flera olika uppfattningen om vad semantiken egentligen ska syssla med. Det finns också flera sinsemellan olika metoder att studera och beskriva språkets innehåll.

Pragmatik

Begreppet pragmatik har alltmer kommit att handla om den situationsbundna användningen av språket, dvs. hur olika sorters kommunikation påverkar ordval och kroppsspråk. Vi använder t ex inte samma ordval och kroppsspråk när vi berättar något för en person vi knappast känner och när vi berättar något för en mycket nära vän.

Syntax

De syntaktiska reglerna beskriver hur ord och böjningsformer av ord sätts samman till fraser och hela meningar, men också vilket innehåll de olika sammansättningarna har.

Grammatik

I ett språks grammatik regleras hur ord böjs och hur de kombineras till fraser och satser. I den traditionella grammatiken inbegrips vanligen morfologi och syntax.

Innebörden i de begrepp som redovisats ovan är inte okontroversiell. Definitionerna kan skilja sig åt både inom en viss vetenskap, t ex språkvetenskapen, och mellan olika vetenskaper.

Det begrepp som sannolikt blivit mest använt och mest vantolkat är fonembegreppet. Hur det ska definieras är inte självklart, men helt klart är att det INTE är detsamma som de uttalade ljuden, vilket många tror.

Matematiken som språk

Här är bäst att inleda med ett ordproblem. När det gäller det vetenskapliga studiet av språk i allmän betydelse så använder vi termerna lingvistik eller språkvetenskap. En del grundläggande begrepp från dessa vetenskaper används i skolans språkundervisning, men man kallar språkämnena för svenska, engelska, tyska, etc. I dessa skolämnen är målsättningen att eleven ska lära sig språken som medel för kommunikation människor emellan och i de högre stadierna få en viss grund för att kunna ägna sig åt vetenskapliga språkstudier inom lingvistiken eller något enskilt språkämne. När det gäller matematiken så används samma ord för såväl skolämnet som det vetenskapliga studiet, trots att syftet med undervisningen är detsamma som för språken. Att studera matematik på grundskole- och gymnasienivå är något hel annat än att ägna sig åt matematisk vetenskap på universitets- och högskolenivå, även om grunden till sådana studier ska läggas under skoltiden. Förr markerades en skillnad mellan skolans studier och vetenskapliga studier, man kallade skolämnet för räkning. I fortsättningen kommer ordet matematik främst att användas för det man ägnar sig åt i skolan om inte annat anges.

Om man frågar någon man möter på gatan varför det är bra att kunna ett språk skulle man sannolikt få till svar att det behövs för att vi ska kunna prata med varandra. Om nästa fråga blir "Om vadå"? skulle svaret lika sannolikt bli "Om allting" eller "Om vad som helst". Om man sedan frågar varför det är bra att kunna räkna är det inte osannolikt att svaret idag skulle handla om ekonomi, att man måste kunna räkna för att ha koll på sina pengar, som är en förutsättning för ett liv i samhället.

Vad som är rätt eller bra svar på dessa frågor är inte det väsentliga här. Det väsentliga är att folk i allmänhet ser språk och räkning som olika.

Skulle man då kunna se även matematik som ett språk? Vi återvänder till det som kännetecknar talat och skrivet språk - en uppsättning godtyckliga tecken utan egen innebörd men som enligt överenskomna regler kan kombineras till större eller mindre meningsbärande enheter. Det verkar då helt rimligt att konstatera att vad som främst skiljer matematikens tecken från talat, skrivet och tecknat språk (åtbördsspråk) är att merparten av, kanske alla, de matematiska tecknen bär ett eget innehåll. För övrigt skulle det gå bra att använda begreppen morfologi, semantik, syntax, grammatik, men kanske inte pragmatik och minst av allt fonetik och fonologi.

Ett exempel som skulle kunna bli föremål för alternativa tolkningar är följande (Kiselman, personlig kommunikation):

Vad betyder parentestecknet ( i ekvationen a(b + c) = ab + ac? Ingenting när det står ensamt eftersom parentestecknen måste uppträda parvis. Men man kan inte skriva enbart ( ). Det måste stå något meningsfullt mellan tecknen. Trots att parentestecknen således inte har någon innebörd om de står isolerade så har de en innebörd tillsammans med andra matematiska tecken. I detta exempel markerar parentesen att a ska multipliceras med såväl b som c. Någon skulle kanske kunna anse att parentesen därmed är ett fonem men en rimligare tolkning förefaller vara att betrakta den som ett grammatiskt morfem, dvs. med samma funktion som t ex pluraländelser och bestämd artikel.

Det matematiska språkets stabilitet är inte absolut. Termers innehåll förändras över tid när begrepp omdefinieras. Exempelvis har ord som kurva, funktion, tangent, haft olika

definitioner under olika epoker. Det innebär att det har funnits och kommer att finnas perioder med terminologisk variation.

Att matematik kan betraktas som ett språk innebär inte att karaktären hos detta språk är densamma som hos det talade eller skrivna språket. Det matematiska språket innehåller begrepp som, även om de refererar till omvärlden, huvudsakligen kan betraktas som abstrakta. Begrepp såsom antal, storleksförhållanden, mängder, position är alla abstrakta, även om de kan åskådliggöras konkret.

Det matematiska språket ökar våra möjligheter att kommunicera om tankar och idéer av en specifik karaktär. Kanske kan man säga att det handlar om att kunna specificera och definiera abstraktioner med anknytning till föreställningar om bl.a. rum, rörelse, funktion, storlek.

Barnets språkutveckling

Numera anser man att språkinlärningen startar redan före födelsen och att det finns en medfödd beredskap, ett nedärvt program, som underlättar för barnet att utveckla ett språk. En framstående minnesforskare (Fuster) kallar detta fenomen för vårt nedärvda minne, dvs. människosläktets samlade minnesbank av erfarenheter. Denna term används som motsats till det individuella minnet, dvs. det minne som har att göra med den enskilde individens erfarenheter.

Att språkinlärningen startar innan barnet fötts är kanske inte så förvånande när man betänker att barnet kan höra omvärldens ljud inne i mammans mage och, som vi nu vet, också har inlärningsförmåga. Samspelet mellan det nedärvda minnet och det individuella minnet startar alltså före födelsen. Den tid är alltså förbi då man ansåg att barnet från början var passivt och asocialt fram till den ålder då det kunde börja härma de vuxnas tal och språk och beteende.

Det nyfödda barnet börjar omedelbart samspela med sin omgivning. Man skulle t o m kunna säga att barnet omgående börjar utveckla två olika talanger parallellt. Den ena har att göra med samspel via ansiktsuttryck och röst, den andra med samspel via de specifika ljud som ingår i det egna modersmålet. Allt detta delar vi faktiskt med flera djurarter. Det är t o m så att förmågan att höra skillnad mellan olika språkljud inte är förbehållen enbart människan, en del apor föds med samma förmåga. Men människan kan lära sig uttala de här ljuden, det kan inte aporna. Det unika med människans lyssnande är således den nära kopplingen till artikulationen.

Hos människan sker identifikationen av språkljud med syn, hörsel och känsel främst via aktivitet i den vänstra hjärnhalvan. En pikant detalj är att även aporna har vänsterhemisfärisk dominans för språkljudsdiskriminationen och fåglarnas artegna sång sköts via den vänstra halvan av deras centrala nervsystem!

Barn (och en del apor) föds alltså med en förmåga att höra skillnad mellan alla tänkbara språkljud. Men det är de språkljud som används av omgivningens vuxna som befästs och sammankopplas med artikulation. Före ett års ålder har barnet förlorat en stor del av den ursprungliga förmågan att höra skillnad mellan alla språkljud. Kvar finns framför allt förmågan att urskilja de ljud som behövs för det egna modersmålet! (Kuhl et al)

Under de första 18 levnadsmånaderna lägger barnet grunden till lust för samspel med andra människor och ägnar sig åt att upptäcka grunderna i sitt modersmåls hemligheter. När barnet kommer på fonemidén har det upptäckt språket. Det brukar vara vid ca 18 månaders ålder. Fram till denna upptäckt följer barnets språkutveckling och högre apors i stor del samma förlopp. En del forskare (Locke) menar att de ord barnet använt fram till dess inte är ord i vanlig bemärkelse, eftersom barnet inte upptäckt att de består av enskilda fonem. De fungerar i stället som en sorts ljudande etiketter på företeelser i omgivningen. Barnet måste tillägna sig en tillräckligt stor samling sådana "ord" för att ha en chans att upptäcka att de är uppbyggda av stavelser, som så småningom bryts ned i de enskilda ljudsegmenten.

För att bygga ett ordförråd som är användbart i samtal med omgivningen måste barnet lära sig att se på omvärlden på ett visst sätt. Ord måste ju användas på likartat sätt inom en språklig gemenskap. Även om vi som människor ser ganska likartat på omvärlden så finns det skillnader och de avspeglar sig i språket. Ett ofta använt, och bra, exempel är hur man uppfattar snö i olika kulturer. På svenska har vi ett fåtal olika ord för snö och de motsvarar hur vi ser snö, hur vi kategoriserar snö mentalt. Andra språk, i arktiska klimat, har många olika ord för alla de olika sorters snö som de anser behöva skilja mellan. De ord vi använder har således en motsvarighet i vår inre mentala klassificering av omvärlden. Vår förmåga till kategorisering och klassificering av omvärlden är sannolikt också medfödd och en nödvändig förutsättning för att bygga ett inre lexikon och ett ordförråd.

Hur är det då med barn som inte hör från födelsen? Ja, nu vet vi att det är mycket viktigt att dessa barn får kontakt med åtbördsspråket så fort som möjligt. Den medfödda beredskapen att utveckla språk är inte begränsad till det talade språket. Även åtbördsspråket kan sägas ha en typ av "fonologi" som ska upptäckas. De åtbörder som används i de dövas språk bygger på ett begränsat antal finger-, hand-, armpositioner, som kombineras till meningsbärande enheter, dvs. morfem. Flera olika studier har bekräftat att det är den vänstra hjärnhalvan som är dominant för detta språks utveckling och användning precis som när det gäller talat språk. Döva barn som får möta åtbördsspråket från tidig spädbarnsålder "jollrar" faktiskt med fingrar och händer precis som det hörande barnet gör med munnen (Petitto et al). Det verkar således inte vara hörseln i sig som avgör utvecklingen av den fonologiska kompetensen

Läs- och skrivutveckling

Vi har konstaterat att förmågan att utveckla talat språk vilar på medfödd grund och en del barn har så lätt för att lära sig läsa och skriva att färdigheterna faktiskt ser ut att komma av sig själva. Än så länge betraktar man dock inte läsning och skrivning som några nedärvda förmågor. Ett barn som växer upp i en talande omgivning kan helt enkelt inte låta bli att börja tala, men en flitigt läsande omgivning innebär inte med automatik att barnet börjar läsa. Ja, så här ungefär ser man idag på förhållandet arv och miljö när det gäller tal och skrift. Med ett sådant synsätt har vi inte tillgång till något nedärvt minne för skrift.

Sedan vet vi att den nedärvda förmågan varierar. Alla barn börjar inte tala med lika stor lätthet. En del har stora svårigheter med att utveckla normal talförmåga. Och alla barn har inte samma förmåga att lära sig läsa och skriva. Så något nedärvt finns det även när det gäller läsning och skrivning. Det är alldeles uppenbart att problem med läs- och skrivinlärning förekommer i vissa familjer.

Det finns idag en fullständigt förkrossande mängd studier som visar att nivån på den fonologiska kompetensen har en avgörande betydelse för hur man lyckas med sin läsinlärning när det gäller avkodning och stavning. I detta stycke om läs- och skrivutveckling kommer texten främst att handla om hur man lär sig avkoda och stava. Att förstå det man avkodat och att kunna uttrycka sig i skrift kräver en annan språklig kompetens än att förstå hur koden är beskaffad. För att förstå det man läser och för att formulera sig väl behöver man bl. a. också ett gott ordförråd och god grammatisk kunskap.

Det finns en anledning till att avkodningsförmågan fått en central plats i detta stycke. Det har att göra med att det idag råder en stor enighet om att begreppet dyslexi, dvs. specifika problem med att lära sig läsa och stava, är knutet just till avkodningsförmåga. Avkodningsproblem behöver inte vara associerade med svagt ordförråd och generellt svag språkbehärskning.

I en läsande familj är det troligt att barnet intresse för skriften vaknar tidigt. Under de första levnadsåren, när de vuxna läser och berättar, upptäcker barnet snabbt att en bok är något positivt som skapar mysig närhet med en vuxen och ger näring åt fantasi och tänkande. Detta är förstås en bra utgångspunkt för att skapa intresse för själva krumelurerna (bokstäverna) på boksidorna.

Barnets tidiga uppfattning om skrift varierar kraftigt. Vissa barn börjar redan vid några års ålder att av sig själva reflektera över bokstavstecknen. De förstår att bokstäverna är koden till det som den vuxne berättar och det bilderna visar. Andra barn visar inga tecken till sådana funderingar. En del barn tycks inte ens finna någon glädje i att lyssna när man läser för dem. Så nog varierar förutsättningarna för att känna lust till bokstäver och böcker!

Läsning och skrivning utvecklas oftast parallellt. Innan barnet förstår sig på att koppla ljud till bokstav så brukar skriften, vare sig den ska läsas eller skrivas, behandlas som bilder, dvs. helheter. Bokstäverna ritas och ord läses som helhetsbilder utan kunskap om de enskilda bokstäverna. Således helt jämförbart med de första orden i talspråksutvecklingen innan fonemidén har upptäckts. En del barn upptäcker snabbt koden (= att det finns ett visst samband mellan talljud och bokstäver) och börjar experimentera med skrivna bokstäver samtidigt som de försöker läsa ord bokstav för bokstav.

I en del språk kommer barnen långt med att arbeta på det här sättet. Det gäller särskilt de språk som har ett rättframt och enkelt förhållande mellan ljud och bokstäver. Finskan är ett sådant språk och även italienskan. Andra språk är krångligare. Till de värre hör engelskan, medan svenskan ligger någonstans mitt emellan. I engelskan och svenskan räcker det inte med att veta vilket ljud som motsvaras av vilken bokstav. I svenskan kan t ex sje-ljudet stavas på många olika sätt. Det lär kunna gå att hitta ca fyrtio olika stavningssätt! Och sen har vi tj-ljudet och j-ljudet.

Men det är inte bara detta som gör att olika språk är olika "svåra" att lära sig läsa och stava. Det finns inget språk som man skriver fonetiskt, dvs. med en bokstav för varje uttalat ljud.

När vi talar så uttalas ljuden olika i olika omgivning, eftersom talapparaten strävar efter att använda muskulaturen ekonomiskt, precis som alla andra rörelseorgan. För att få smidiga övergångar mellan talljuden, fonerna, så börjar talapparaten förbereda de ljud som ska komma lite i förväg.

Tydliga exempel på detta är t ex ord där /n/ kommer före /k/, som i bänk, vinka, pannkaka, etc. K-ljudet uttalas långt bak i munnen och n-ljudet uttalas med tungspetsen mot övertändernas baksida, dvs. långt fram i munnen.. Det leder till att k-ljudet kommer att påverka n så att det uttalas på samma plats i munnen som k och då blir det i stället ett ng-ljud. Vi säger alltså bängk, vingka, pangkaka. Andra bra exempel är möten mellan tonande och tonlösa ljud. Tonande ljud uttalas med vibrerande stämband, medan tonlösa ljud uttalas med öppna stämband. Det är motoriskt mycket belastande att växla snabbt mellan dessa båda uttal och därför väljer munnen att förenkla. Något som vi i regel är helt omedvetna om. Vi tänker inte på att det tonlösa t-ljudet gör att vi säger hökt i stället för högt och snappt i stället för snabbt. Eller att kombinationen [s] och efterföljande tonande vokalen gör att vi säger sbara i stället för spara och sdor i stället för stor.

Anledningen till att skillnaden mellan uttal och stavning ägnas så stort utrymme här är att den har så stor betydelse för hur vi klarar att lära oss läsa och skriva. Om man ska lära sig skriftspråket bra så gäller det att kunna frigöra sig från det konkreta uttalet och förstå den fonologiska och morfologiska koden. Vi brukar kalla det här för att bli fonologiskt medveten. Det räcker således inte med den fonologiska kompetens som krävs för att lära sig tala ett språk, att upptäcka vilka enskilda språkljud som ska användas i det egna modersmålet. Man måste klara något mer, att anlägga ett utifrånperspektiv på språket och framför allt på fonologisk och morfologisk form. Hur medvetet detta är kan diskuteras. Det är nog snarare så att det är något man bara kan. Det är inte troligt att ett aldrig så läsduktigt barn skulle kunna ge en medveten förklaring till varför man skriver högt och inte hökt eller snabbt och inte snappt. De bara vet att det är så.

Och nu kan vi återknyta till skillnaden mellan olika språk. I en del språk är ljudstrukturen främst en regelbunden växling mellan vokal + konsonant + vokal + konsonant med få konsonant + konsonantkombinationer. När det finns konsonantkombinationer kan de bestå av sådana ljud som inte kräver uttalsförändringar för att bli lätta att uttala. Olika skriftspråk belastar således den fonologiska kompetensen i olika grad. En del studier tyder på att dyslexi (= avkodningsproblem) inte har samma starka samband med fonologisk kompetens på alla språk.

I svenskan, och ännu mer i engelskan, finns ett stort inslag av ord med s. k. oregelbunden stavning. Vi lär oss att läsa dessa som ett slags ordbilder (s.k. ortografisk avkodning). I språk som har den här växlingen mellan oregelbunden och fonologisk representation i skrift, så verkar det som om det är den fonologiska kompetensnivån som avgör även utvecklingen av den ortografiska avkodningen. Man måste helt enkelt grunda sin läsning på en god förmåga till fonologisk avkodning.

Att det är en skillnad mellan talat och skrivet språk är inte något som ägnas särskilt mycket tid och eftertanke i vår kultur. Det skrivna språket har hög status och betraktas, särskilt av lekmannen, som norm även för talet. Intressant är att det inte måste vara så och inte är så i alla kulturer. I Indien har den muntliga traditionen hög status. Det visar sig bl. a. i att när man skriver på sanskrit så skriver man i stor utsträckning fonetiskt. Ett skrivet ord får därför olika slutbokstav beroende på vilket ljud nästa ord börjar på. Detta är något man undervisas i, dvs. att ljud uttalas olika i olika ljudomgivning är något som medvetandegörs och som omsätts i bruket av bokstav. Sanskrit har i första hand använts för muntligt berättande och skriften ska därför stödja talet, inte tvärtom.

Den matematiska förmågans utveckling

Det finns betydligt mindre litteratur om matematikutveckling än om språkutveckling, men antalet artiklar och böcker har börjat växa påtagligt under senare år.

Trots att det är flera decennier sedan de första artiklarna publicerades om barnets medfödda matematiska talang (t ex Antell & Keating), så har de inte blivit särskilt uppmärksammade förrän på senare tid. Åtminstone inte bland pedagoger/specialpedagoger.

Flera olika experiment har övertygande visat att det späda barnet, t o m det nyfödda barnet, har viss antalsuppfattning. Länge trodde man att det rörde sig om antal upp till 3 - 4, men så kom en studie (Xu & Spelke) som tyder på att spädbarnet klarar att identifiera upp till 16 enheter! Andra studier (Wynn) har visat att det inte bara är stationära föremål som barnet "kan räkna", utan även handlingar. Spädbarnet har också en viss förmåga att uppfatta om ett antal minskas eller ökas.

De experiment som ligger till grund för påståendet om en medfödd matematisk förmåga är inte allmänt kända. Det kan därför vara på sin plats att redovisa några av dem.

Den metod man använt sig av i flera experiment kallas habituering - dishabituering. Det är en metod som utgår från att spädbarn verkar tycka om det som är nytt och visar det genom att titta längre på det som uppfattas som en nyhet, en förändring. När de vänjer sig, habituerar, tappar de intresset och slutar titta fokuserat. En förändring väcker intresset igen, dishabituering, och de börjar titta uppmärksamt. Man mäter helt enkelt den tid barnet visar uppmärksamhet. Det här är en av de metoder man använt när man upptäckt att det späda barnet hör skillnad mellan olika språkljud och röster och ser skillnad mellan olika färger. Här följer nu några exempel på den här typen av studier.

Ett spädbarn, en dag gammalt, får se ett kort med två svarta rundlar. Barnet tittar uppmärksamt. Man byter efter en stund till ett kort med två svarta rundlar som är placerade lite längre ifrån varandra. Barnet tittar noga. Korten byts sedan omväxlande och efter några gånger blir barnet helt ointresserat. Då byter man till tre rundlar och finner att barnets intresse väckts på nytt. Man upprepar med rundlarna längre ifrån varandra och växlar mellan de båda 3-korten. Intresset slocknar efter en stund, men återkommer om man tar de första korten igen. Samma försök har senare gjorts med två respektive tre föremål på bild. Samma resultat erhålles som med rundlarna, dvs. barnets intresse väcktes när antalet byttes (Antell & Keating, 1983, Starkey et al, 1990).

I ett annat försök med ett sex månader gammalt spädbarn fick barnet titta på en liten scen där det fanns en marionettdocka. Dockan får göra två hopp med en kort paus emellan. Efter några gånger försvinner intresset och barnet tittar lite förstrött. Då får dockan göra tre hopp och intresset återkommer (Wynn, 1995).

Ett annat exempel är det försök där spädbarn mellan fyra och fem månader gamla fick titta på två dockor på en liten scen. Ridån drogs för, men barnet kunde tydligt se hur en hand tog bort en docka. Ridån drogs ifrån, ibland fanns då en docka kvar, ibland två dockor. Barnen tittade betydligt längre när det fanns två dockor kvar, vilket har tolkats som att barnet hade förväntat sig en docka, dvs. så pass små barn har en uppfattning om minskad mängd.

Det förefaller således som om det finns en medfödd beredskap för matematiskt tänkande, precis som för talat språk, ett nedärvt minne. Och precis som för det talade språket så finns samma förmåga hos högre apor. En schimpans kan lära sig förhållandet antal - siffror, åtminstone upp till talet fyra, samt klarar även att addera med siffror (Rumbaugh & Washburn). Djur kan även uppskatta och jämföra två kvantiteter. Mängduppfattning har även kunnat påvisas hos fåglar (Thorpe). Den här tidiga, primitiva, förmågan att i en blick uppfatta antal har ett särskilt namn, subitisering (av latinets subitus = plötslig)..

Fler paralleller finns mellan språkutveckling och matematisk utveckling. Barnets tidiga kommunikativa kompetens kan ses som en förberedelse för det som ska bli språk på riktigt. När fonemidén upptäcks, då har barnet erövrat språket och då lämnar det alla kompetenta djur efter sig. På samma sätt betraktar man den tidiga numeriska kompetens som barnet delar med vissa djur som en annan sorts förmåga än matematiskt tänkande på riktigt, än att verkligen kunna räkna (Munn, 1998).

När man talar om utveckling av räkneförmåga är det ofta två aspekter av räkning som lyfts fram; att förstå de matematiska begreppen och att korrekt behärska olika räkneprocedurer. I vilken ordning lär man sig dessa?

Enligt en ofta citerad hypotes (eng. The privileged domain hypothesis, Gelman & Gallistel, 1978), har evolutionen gynnat inlärning av några få grundläggande matematiska principer. Dessa principer antas ha haft stor evolutionär betydelse och lärs in av barn i skilda kulturer, i tidig ålder och i samma ålder. Principerna, som således utgår från att förståelse föregår procedur, är:

• Ett-till-ettprincipen.

Ett räkneord = ett objekt.

• Den stabila ordningens princip.

En sekvens av räkneord har alltid samma ordningsföljd.

• Kardinalitetsprincipen.

Det sista talet man använt när man ramsräknar ett antal föremål mostsvarar antalet föremål.

• Abstraktionsprincipen.

Vilken samling objekt som helst kan räknas.

• Den irrelevanta ordningens princip.

Man kan räkna objekt i vilken ordning som helst.

Alla anammar inte den här hypotesen, som betonar den biologiska grunden för utveckling av matematisk förmåga. En alternativ hypotes (The frequency of exposure hypothesis, Fuson, 1988, m fl.) ser i stället miljöns inflytande som avgörande för den matematiska utvecklingen. Man menar att om barn får rikligt med erfarenheter av att iaktta vuxna räkna så kommer de att kunna imitera ofta och därmed lägga grunden till en senare förståelse. Med denna hypotes som grund är det procedurer som föregår förståelse.

Rittle-Johnson & Siegler (1998) har gått igenom litteraturen med studier av barns räkneutveckling när det gäller att räkna föremål, att addera ental, att addera och subtrahera flersiffriga tal, att räkna med bråk, att räkna med proportioner. Resultatet blev att för vissa av dessa färdigheter kommer behärskning av procedur före den djupare förståelsen, för andra är det tvärtom. Se sammanfattning nedan.

*Räkna föremål * - Barn i 2 ½ - 3 års ålder klarar bra att räkna upp till 10 föremål utan att förstå underliggande begrepp. Alltså procedur före förståelse, vilket motsäger den biologiska tolkningsprincipen.

Addition av ental - De flesta 5-åringar förstår underliggande begrepp innan de behärskar principen att addera från högsta tal (= lägger ihop 2 + 5 genom att börja räkna från 5 och sedan 6, 7). Alltså förståelse före korrekt procedur.

Addition och subtraktion av flersiffriga tal - För barn i lågstadieåldern korrelerar korrekt användning av procedur med förståelse.

Korrekt användning av procedur kommer i regel samtidigt med förståelsen, men en hel del barn använder korrekt procedur innan de förstår, särskilt om de drillas i räkneövningar. Alltså varierande.

Räkning med bråk - För barn i övre låg- och mellanstadieålder kommer förståelsen före korrekt procedur när det gäller addition av bråk, men procedur före förståelse när det gäller multiplikation av bråk.

Proportionsräkning - Redan i tidig lågstadieålder förstår barn resonemang om proportioner, men de hinner komma ända upp i högstadieåldern innan de behärskar beräkningsprocedurerna. Alltså förståelse före procedur.

När Rittle-Johnson och Siegler diskuterar sina fynd så blir dras tolkning att mycket tyder på att det är miljöinflytande som ger skillnaderna mellan förståelse respektive procedur. Barn och ungdomar uppmuntras i olika åldrar på olika sätt till matematiska aktiviteter. De små barnen får uppmuntran i överflöd så fort de använder räkneord och de erbjuds rika tillfällen till enkel räkning i vardagen, men ju äldre de blir desto färre blir tillfällena till räkning i vardagen om man betänker att nivån på matematiska problemen då ska vara högre. Det är de enkla räkneoperationerna som självklart ingår vardagskulturen, vilket gynnar de mindre barnen. Det är på grund av detta faktum som barn ofta uppfattas ha god matematisk förståelse när de är små, men blir sämre när de gått i skolan några år.

Märkligt nog reflekterar inte författarna över att inslaget av skriftlig matematik ökar med den matematiska komplexiteten och att detta faktum kan påverka inlärningen. Det är över huvudtaget få artikelförfattare som för några djupare resonemang om avkodningsförmåga relaterad till den skriftliga matematiken. Däremot är det många som funderat över vilken betydelse vårt sätt att uttala och benämna tal har. (Ställd inför denna sista mening kan man bara beklaga att ordet tal i svenskan har två olika betydelser!) I flera av de asiatiska språken benämns talen mellan 10 och 20 på ett sätt som stämmer med logisk ordningsföljd. Man säger alltså 'tioett, tiotvå, tiotre', etc. I många (de flesta?) andra språk är man mera ologisk. I skrift ser det nog bra ut, dvs tiomarkeringen kommer först som en etta, men man uttalar talet i omvänd ordning och utan att bibehålla ordet 'tio', alltså 'fem-ton, sex-ton, sju-ton'. Ja, 11 och 12 har ofta egna benämningar och man behåller på svenska inte grundorden i 14, 18 och 19. Då skulle det ju heta fyra-ton, åtta-ton, nio-ton. Att man på detta sätt krånglar till det uttalsmässigt har fått en del forskare att studera vilken effekt det kan ha på förståelsen av flersiffriga tal.

Towse och Saxton (1998) summerar resultaten av dittills gjorda studier av de språkliga benämningarnas effekter och kommer fram till att resultaten kan tolkas på flera sätt. De vill inte bestrida att det kan finnas ett visst samband, men det är inte så stort som man kanske vill tro. När det gäller förståelse av 10-basen så visade t ex en studie att japanska och engelska barn hade lika stor nytta av att få 10-talet konkretiserat. Det borde de inte ha haft om enbart den språkliga benämningen räckt för att skapa den djupare förståelsen (Saxton & Towse, 1997).

Skriven matematik, ett utvecklingsperspektiv

Man kan i regel se ett visst utvecklingsmässigt mönster i barnets sätt att skriva antal.

På samma sätt som i skriftspråksutvecklingen är det många barn som börjar skriva i form av klotter. De har då inte någon uppfattning om innebörden av sifferbegreppet även om de har antalsuppfattning. Nästa nivå representeras av bildritning, piktografisk återgivning. Om man t ex ber barnet att på papper visa hur många klossar som finns på bordet, så ritar de av klossarna med färger och eventuella storleksskillnader. På nästa nivå återges antalet med figurer av något slag t.ex. streck eller rundlar, ikonisk återgivning Så småningom används siffror. Även dessa kan dock ibland användas ikoniskt så att antalen 1 till 4 skrivs på följande sätt: 1, 1 2, 1 2 3, 1 2 3 4.

Alla barn går inte igenom dessa utvecklingsstadier. Det finns t ex barn som går direkt från klotter till siffror och det finns barn som inte alls klottrar (Munn, 1998).

Under en period blandar många barn siffror och bokstäver. De lär sig sedan att bokstäver används vid läsning och skrivning, medan siffror används till att räkna med. De har således olika funktion. En ny period av förvirring uppstår när barnet utsätts för den vuxnes pedagogik, före eller efter skolstart, och uppmanas att "läsa ett tal". Barnet förknippar i regel läsning enbart med bokstäver. Nu måste barnet upptäcka att bokstäver och siffror hör hemma i olika typer av notationssystem. Siffror läses inte på samma sätt som bokstäver, koden är inte densamma. Siffror läses ideografiskt, de har ett namn som läses som helhet.

Siffror skrivs på samma sätt i de flesta språk, men de heter inte likadant. Vi skriver 12 på en väldig massa språk, men vi säger på svenska tålv, på franska doz, på engelska toelv, på tyska tsvölf, osv. Det gäller verkligen att våra små barns lärare har förståelse för att de konfronterar barnen med hela olika skrivsystem från den ena stunden till den andra.

Det finns ett klart samband mellan barns upptäckt av siffersymboler och av skriftens symboler, mellan att förstå siffrors funktion och skriftens funktion. Barnet förstår därmed att symbolerna i sig räcker för att lagra och överföra information, att det inte behövs några (vuxna) mellanhänder.

Det utesluter inte att ett barn kan ha specifikt svårt för att lära sig använda något av dessa symbolsystem på ett ledigt och bra sätt.

Samtala, läsa och räkna, likheter och skillnader

Matematik är ett slags språk, det har vi kunnat konstatera. Här ska vi nu ägna ett avsnitt åt vad som kan tänkas förena och vad som kan skilja de naturliga språken från matematiken.

Avgörande för att utveckla ett talat språk (och de dövas teckenspråk) är att man förmår upptäcka fonemidén. Med denna minsta betydelseskiljande, men i sig betydelselösa, enhet bygger man morfemen, som i sin tur byggs vidare till satser och hela historier. Upptäckten av fonemet är inte beroende av någon speciell sinnesfunktion, även om naturen från början försett de flesta av oss med en auditiv förmåga som hjälper oss att upptäcka talets fonologi. Själva fonemidén går dock att upptäcka på annat sätt om det kniper. Minns Helen Keller som lärde sig att språka via händerna trots att hon var både blind och döv!

Vad som är avgörande för att utveckla matematiskt tänkande kan nog ingen uttala sig om med bestämdhet. Det har i vart fall inte med fonologi att göra. Det finns inte någon minsta, betydelselös, men betydelseskiljande enhet att upptäcka här. Däremot krävs förmåga till antalsuppfattning, en förmåga som inte kan sägas ha någon avgörande betydelse för att utveckla ett naturligt språk. Den förmåga till antalsuppfattning som vi föds med antas ha sin grund i en ännu mer grundläggande förmåga till perceptuell organisation av omvärlden via synen. Synen kan dock inte vara avgörande, eftersom även blinda personer kan räkna. Det är i stället en förmåga till att skapa en organisation och struktur i tänkandet som inte är beroende av en specifik sorts sinnesintryck, precis som vi kunnat konstatera när det gäller fonologin.

I en något svårtillgänglig bok utgiven av English (1997) beskriver olika författare hur olika tankemässiga verktyg används inom matematiken. Dessa tankemässiga verktyg innefattar tänkande i metaforer, analogier, metonymier och inre bilder. De förekommer givetvis även utanför matematiken, men har ett särskilt stort värde när det gäller att skapa struktur och förståelse för matematiska begrepp och samband mellan dessa. Man är angelägen om att framhålla att matematik är ett tankemässigt förhållningssätt till omvärlden och inte taluppställningar och uträkningsregler. Flera av författarna påpekar att matematik i första hand är ett sätt att tänka om företeelser i omvärlden och att barn tidigt har en bättre förmåga att tänka i t.ex. analogier (Alexander et al) än vad vi tror och att vi definitivt inte använder oss av detta goda utgångsläge när vi börjar undervisa dem i matematik. Den begreppsliga abstraktionsnivån kan vara högre (eller lägre!) än vi tror; vi har helt enkelt inte tagit för vana att utforska den nivån på något systematiskt sätt innan vi börjar påverka barnet med pedagogiska metoder.

Naturliga språk och matematik har således beröringspunkter när det gäller innehållssidan, den begreppsliga organisationen, semantiken. I de naturliga språken återspeglas innehållssidan främst i det ordförråd vi använder oss av, men också i den grad av grammatisk komplexitet som vi väljer att uttrycka oss med.

I den stora OECD-studie som kallas PISA (Program for International Student Assessment) framkom ett starkt samband mellan resultaten på matematikprovet och resultaten på prov i ordigenkänning och läsförståelse (Skolverket). Med det resonemang som förts i denna artikel är det inte särskilt förvånande. Även om matematikprovet inte hade innehållit en enda läsuppgift skulle man sannolikt finna ett samband mellan prestationer lexikalt-semantiskt och matematiska prestationer. Om man testat grammatisk nivå kanske man också hade kunnat se ett samband med matematisk nivå. När även läsning och skrivning tillkommer som inslag i de matematiska proven belastas många olika förmågor utöver den rent matematiska.

En skillnad mellan talat språk och matematik finns i kraven på precision. När vi samtalar med varandra kan vi uttrycka oss oerhört oprecist och ändå göra oss förstådda. Enstaka ord kan t o m bytas mot sitt motsatsord eller uttalas fel och vi förstår ändå av sammanhanget vad som menas. Tonfall, gester och bakgrundskunskap kan förtydliga och förändra innehållet i ett talat meddelande. Förmågan att tolka formellt felaktiga utsagor skiftar dock från person till person och har delvis att göra med hur stor lyssnarens pragmatiska kompetens är.

I ett skrivet meddelande finns inte den här möjligheten. I så fall måste tonfallet och ansiktsuttryck beskrivas i texten, t ex "sade hon ironiskt, glädjestrålande, frågande", etc.

Inte heller i matematiken medges personlig variation på det här sättet, dvs. formell otydlighet och t o m felaktiga utsagor. Det grammatiska regelverket måste följas annars är risken stor att budskapet blir ett annat än det avsedda. Här finns alltså en likhet mellan matematiken och skrivet språk.

Resonemanget ovan innebär inte att ett ord i matematiken alltid betyder detsamma, men variationen följer regelverket och är inte öppen för personliga infall. När man t ex använder sig av tecknen x och y i matematiken, så är själva finessen att de kan anta olika värden.

Ett annat exempel som visar att även +-tecknet kan ha olika betydelser, är räkning modulo ett visst tal. Man nollställer då räkneverket när man kommer upp till detta tal, så att 23 + 8 = 7 modulo 24 och 11 + 8 = 7 modulo 12. Vi är ganska vana att räkna just så, eftersom man ju vaknar klockan 7 efter att ha sovit 8 timmar från klockan 23 eller 11 (Kiselman, personlig kommunikation).

För att lära sig läsa i betydelsen avkoda ord/texter så måste man förstå sig på vad ett fonem är. Och det räcker inte med den fonologiska kompetens som krävs för att lära sig tala det egna modersmålet. Man behöver nå en högre nivå. Det vi kallar fonologisk medvetenhet och som enligt alla studier har en så avgörande betydelse för läsinlärningen innebär främst att vi måste inse fonemets roll i förhållande till morfemet, kunna identifiera morfemet och dess fonem.

Sammanfattningsvis:

• avgörande för att man ska lära sig tala och läsa är att man upptäcker fonemidén. När det gäller läsning så krävs denna insikt på en högre abstraktionsnivå (eller är det kanske en annan abstraktionsnivå?) än när det gäller talat språk.

• avgörande för att utveckla matematiskt tänkande är att man har förmåga till antalsuppfattning och att man kan utveckla en struktur för sitt tänkande i matematiska begrepp på en hög abstraktionsnivå.

• det finns berörningspunkter mellan naturliga språk och matematik när det gäller innehållssidan och grammatike

• för det vanliga samtalet människor emellan behöver man inte förfoga över lika avancerade begreppsliga tankestrukturer som när man ägnar sig åt matematisk problemlösning ovanför den mest elementära nivån.

• metatänkandet (tänkandet om språket respektive matematiken) gäller vid läsinlärningen främst fonologin, men i matematiken semantiken och grammatiken.

Birgitta Johnsen, cheflogoped Länssjukhuset Gävle-Sandviken (Språka loss 2003)

Referenser

Först vill jag nämna en bok i svensk översättning som innehåller intressant och välskriven information, nämligen

Butterworth, Brian, 1999, Den matematiska människan, W & W.

För den som är intresserad av ämnesområdet är denna bok nödvändig läsning. Att den inte finns refererad i texten beror på att ursprungskällorna citeras (och har lästs!) i denna artikel.

Alexander, P A, White, S, Daugherty, M, 1997, i English, L D (red.), Mathematical Reasoning. Analogies, metaphors and images.

Antell, S A, Keating, D, 1983, Child Development, 54, 695 - 701.

Badian, N A, 1983, Journal of Learning Disabilities, 16, 154 - 157.

Donlan, C, 1998, i Donlan, C (red.), The development of mathematical skills.

English, L D (red.), 1997, Mathematical Reasoning. Analogies, metaphors and images.

Fuson, K C, 1988, Children´s counting and concepts of number.

Gelman, R, Gallistel, C R, 1978, The childs understanding of numbers.

Kiselman, C, Professor, Institutionen för matematik, Uppsala universitet.

Klassifikation av sjukdomar och hälsoproblem 1997. Systematisk förteckning. Socialstyrelsen.

Kosc, L, 1970, Studia Psychologica, 12, 12 - 28.

Kuhl, P K, Tsao F-M, Liu H-M, Zhang Y, de Boer B, 2001, Language/Culture/Mind/Brain. Progress at the margins between disciplines, Annals of the New York Academy of sciebces 935:136 - 174.

Locke, J L, 1997, A theory of neurolinguistic development, Brain and language, 58, 265 - 326.

Munn, K, 1998, i Donlan, C (red.), The development of mathematical skills.

Petitto, L A, Holowka, S, Sergio, L E, Ostry, D, 2001, Language rhythms in baby hand movements, Nature, 413, 35 - 36.

Rittle-Johnson, B, Siegler, R S, 1998, i Donlan, C (red.), The development of mathematical skills.

Rumbaugh, D M, Washburn, D A, 1993, i Boysen & Capaldi (red), The development of numerical competence: Animal and human models.

Saxton, M, Towse, J N, 1997, Journal of Experimental Child Psychology, 68.

Skolverket, 2001, PISA 2000: svenska femtonåringars läsförmåga och kunnande i matematik och naturvetenskap i ett internationellt perspektiv. Skolverkets rapport: 209.

Starkey, P, Spelke, E S, Gelman, R, 1990, Cognition, 36, 97 - 128.

Thorpe, W H, 1963, Learning and instinct in animals, 2:a uppl.

Towse, J N, Saxton, M, i Donlan, C (red.), 1998, The development of mathematical skills.

Wynn, K, 1992, Nature, 358, 749 - 751.

Wynn, K, 1995, Mathematical Cognition, 1, 35 - 60.

Xu, F, Spelke, E, 1997, i Shafto & Langley (red), Proceedings of the Nineteenth Annual Conference of the Cognitive Science Society.

(Språka loss 2003) www.fungerandemedier.se

Ämnen:

Bifogat material

PDF icon jonsensamtalalasa_skriva.pdf